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We have also continued our research on identifying and applying methods of
measurement of shock-induced deformation, and relating, via laboratory and
field shock loading, observed shock effects to the shock histories of carbonate A
rocks from explosion and impact craters. During the last 6 months, we have A
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shocked coral with coral core samples drilled f om directly beneath Cactus
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X-ray patterns have been observed in single crys al aragonite ostensibly
shocked to the same pressure by shock pulses of ifferent duration; those
samples experiencing long duration (100 Psec) pul es, as in the Miser's Bluff
TNT blast, show significantly greater shock effects than laboratory shocked
(1 isec duration pulse) samples. Having established the viability of the X-ray
diffractometer and ESR techniques as shcck effect detectors in calcite and
aragonite, we are also applying these methods to carbonate samples from the
Diablo Hawk experiment and from several meteorite impact structures. The
preliminary ESR results obtained for samples from Hauqhton Astrobleme do show
spectral features at least qualitatively similar to those found in experimen-
tally shocked carbonates. We are continuing to study the mechanisms of
crystal damage in calcite and aragonite resulting from shock pulses of
different time scales.
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I. INTRODUCTION

During the past 6 months, we have obtained results on the high to low

magnesium calcite transition in the core from the 18 kT Pacific Test Site
X

nuclear explosion crater, Cactus, which may have significant bearing on the

interpretation of crater structure. Specifically, the results indicate

retention of pre-impact stratigraphy, the absence of a fallback breccia lens

below 11 m (thus limiting the thickness of such a lens, if present, to ' 1I m),

and coherent downward displacement of the rocks underlying Cactus crater by

nu. 6 m. These results are discussed in Section II.

We have also continued our efforts to develop techniques which will be

able to detect and place quantitative limits on shock metamorphism in carbonates.

Having established the viability of the electron spin resonance (ESR) method

for low shock pressure level determinationsin calcite, we began to investigate

the possibility of using X-ray diffractometer peak broadening (Vizgirda and

Ahrens, 1977, Vizgirda et al. 1978, Hanss et al. 1978) in quantitative shock

deformation analyses of calcite and aragonite. Tentative trends previously

reported were substantiated by re-running the samples on X-ray equipment

allowing much higher resolution and by refining the measuring and calculational

methods. The results are reported in Section III.

Ultimately, we would like to be able to successfully apply our investigative

methods to naturally shocked carbonates. We have taken initial steps in this

effort with the ESR technique and found qualitatively similar effects in

calcite from a " 14 m.v. old meteorite impact crater and in experimentally

shocked calcite.

In addition to establishing empirical shock pressure versus deformation

correlations for carbonate minerals, we have made attempts to understand the

deformation mechanisms responsible for the various spectroscopic effects, and to

develop a general framework for understanding the response of calcite and

aragonite to dynamically induced strains. Initial efforts in this direction

have included ESR investigations of single and polycrystalline calcite and

X-ray diffractometer scans of aragonite shocked in the laboratory and in a

long duration shock pulse TNT blast. On the basis of these preliminary results,

it can be concluded that both the nature of the shock pulse and of the carbonate

sample (i.e. single or polycrystalline, porous or non-porous) profoundly affect

the observable shock deformation.
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Finally, we have reached tentative conclusions regarding the range of

shock effects that are retained and may be observed in carbonate minerals, and

have better defined the limitations of our detection methods. Proposals for

future investigations are guided by the recognition of these possibilities and

limitations.

II. HIGH TO LOW MAGNESIUM CALCITE TRANSITION IN CACTUS CRATER SAMPLES

WITH IMPLICATIONS FOR CRATER STRUCTURE

X-ray diffractometer spectra of Cactus crater core material obtained at 10

slow scan speeds of 0.250 20 per minute allowed resolution of the high and low

magnesium calcite peaks in samples from the top five meters of core, and

showed that the transition from high to low Mg content was continuous over

this interval.

Fig. 1 shows X-ray powder diffractometer spectra of the five topmost

samples from the XC-l core. The peak at 29.8* is the high Mg calcite peak,

corresponding to a MgCO3 content of 14.2 + 0.4 mole %. The 29.50 20 peak

corresponds to low Mg calcite, with MgCO3 ranging from 1.5 to 3.1 mole Z.

(Both represent reflection from the (104) face.) MgCO3 contents were determined

from an empirical curve (H. Lowenstam, personal communication, 1979). The

results also correspond to the curve relating weight % MgCO 3 to 20 values ]
presented in Chave, 1952. Only the low magnesium peak was present in samples

deeper than 15.4 m. The peak at 28.40 20 is due to the (111) reflection of an

internal silicon standard.

The mole percent of high magnesium calcite, as determined from relative

peak height measurements, versus depth of sample is plotted in Fig. 2. Each

point represents an averaged high Mg calcite value for 3 aliquots. Note

the consistent decrease in the amount of high Mg calcite in the top 5 m of J
XC-l core. A least squares fit provides the following relationship for XC-l

depth vs. mole % high magnesium calcite:

Depth (m) = 0.05 x [% hi Mg calcite] + 15.586 [I]

The correlation coefficient, r2 , is 0.97. High Mg calcite contents for XRU-3

samples are also plotted on this graph. Since no XRU-3 samples between 8 and

I 6
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Figure 1: X-ray powder diffractometer spectra of Cactus XC-I samples; depth are indicated inmeters. High magnesium calcite, low magnesium calcite ((104) reflections of both), and silicon
4" standard ((Ill) reflection) peaks are located at 20 values of 29.8*,29.5*,and 28.4, respective-

ly. Note the consistent transition from high to low magnesium calcite from the top of the core4 to a depth of approximately 15 m.

--



-- -' ' ' t ' -'_I .i-.

~0
i

f~1";
0 0i

(m)~~1 HdF- 0

0

0 0L

- 0I

ID 0

00

-0

-0

Figure 2: Mole 2 high magnesium calcite vs. depth in Cactus cores XC-1 and XRU-3. Note the
consistent transition, over a 5 m interval, from high to 1ou magnesium calcite in the XC-1
core. A least squares fit provides the following relationship for XC-I depth vs. 2 high
magnesium calcite: Depth (m) = 0.05 x 12 hi Mg calcite] + 15.586.
The correlation coefficient, r2 , is 0.97.
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12 m were available, it was not possible to trace the Mg content transition

in this control core, if, indeed, the transition is present. However, the

graph does seem to indicate that the XC-l core has been depressed 4 to 8 m

relative to the XRU-3 core. This relationship, along with the Mg calcite

transition in the XC-l core is depicted in Fig. 3.

The discovery of a gradual transition from high to low Mg calcite in

the upper 5 m of Cactus crater core has significant bearing on interpretations

of cratering mechanics and simple crater structure. If the trend depicted in

Fig. 2 is a representative chemical profile through the upper levels of

Cactus crater, then it presents strong evidence for the retention of pre-impact

stratigraphy and the absence of a homogeneous fallback breccia lens below

11.1 m, the level of the uppermost XC-l sample. An allochthonous (i.e. fallback)

breccia lens may be present above this level, in which case it has a thickness

on the order of 1 m or less. This figure is based on the depth at which the

XC-1 core was collared-in and on an estimation of the thickness of sediments

accumulated between the time of the nuclear event and the time of drilling

by washing in from the crater rim (B. Ristvet, personal communication, 1979). 3

However, below 11 m, the rocks, in all probability, have not been ejected,

trather they have been depressed 6 ± 2 m relative to XRU-3 levels.
An alternative interpretation, suggested by B. Ristvet (personal

communication, 1979), would explain the X-ray results in terms of a "mixing

model". In this model, the starting conditions would be represented by a

sharp stratigraphic break between rocks containing only high Mg and only low

Mg calcite, occurring below 15 m. During the blast, brecciation and mixing

would depress high Mg calcite rock fragments to deeper levels and bring low

4Mg calcite rocks to shallower levels, thus obliterating the original chemical

discontinuity and producing the gradation in Mg calcite depicted in Figs. 2

and 3.

An investigation of XRU-3 samples from the critical levels between 8 and

12 m would, hopefully, provide the evidence needed to support one or the other

of the proposed models. In addition, it would allow a better estimate of the

amount of depression beneath Cactus crater.

4 9
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ii
EIII. SHOCK-INDUCED MOSAICISM OF ARAGONITE CRYSTALS

Previously, we had reported preliminary results showing X-ray

Vdiffraction peak broadening in samples from the upper levels of the

jXC-I Cactus crater core. In the past six months, we have re-analyzed these

samples, together with experimentally shock-loaded coral and single crystal

aragonite; the results confirm our original observation of diffraction peak

broadening in shocked carbonate samples.

The description of the X-ray analyses and measurement techniques is

A
presented in the Appendix. Crystallite sizes were determined using measured

peak widths at half-heights, corrected for instrumental broadening. Aragonite

rather than calcite was chosen for the investigation of peak broadening in

Cactus samples in order to minimize possible interference from compositional

variations; the MgCO 3 content of calcite, as described in the previous section,

is variable in the range of 1.5 to nu 14 mole %, whereas aragonite is relatively

pure and tends to conform to the ideal formula (Deer, Howie and Zussman, 1966).

Widths of aragonite peaks at 26.20 and 27.20 20, corresponding to reflections

from (iii) and (021) respectively, were both measured and used to compute

crystallite sizes. There was no consistent variation between the two sets of

values and the results agreed to within 500 A. The crystallite sizes plotted

in Fig. 4 represent an average of 26.2' and 27.2
° 26 peak widths for at least

two sample preparations. Generally, enough material for only one X-ray sample

preparation was retrieved in a shock recovery experiment. In such cases, the

sample was re-dispersed and a second X-ray diffraction spectrum was made;

averaged results from these two scans are plotted in Figs. 5 and 6.

Crystallite sizes were calculated from peak widths using the Scherrer

formula (Cullity, 1956).

t 0.9 A [2]
t=$sin 0

where t = crystallite thickness (A)

X = wavelength of radiation used (A)

= peak width at half height in terms of 20 (radians)

I S = diffracting angle

Crystallite thickness refers not to sample particle size, but to the average

L dimension of the effective coherently diffracting domain. The peak width,

S, refers to the measured width minus the broadening due to instrumental effects.

4,-
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In our analysis we have contributed the observed broadening to the

crystallite size effect entirely. However, other factors, such as lattice

spacing variations and plastic strain, may contribute to peak broadening as

well. As discussed in Section V, Guinier investigations of carbonates, both

calcite and aragonite, shocked to pressures below 10 GPa, have not yielded

definitive results on lattice parameter changes. In any event, we suspect

the lattice parameter shifts in Cactus calcite, should they occur, to be i

on the order of thousandths of angstroms (Vizgirda et al., submitted for

publication, 1979); similar changes present in aragonite minerals from

Cactus samples would not be detectable with the X-ray diffractometer.

In X-ray investigations of shock-impacted silicate minerals (Hurz and Quaide,

1973; Hanss et al. 1978), it has been assumed that mosaicism dominates over

plastic deformation. We have not discounted a contribution from strain to

peak broadening, but are unable, from data presently available, to quantify

these effects; therefore, in our calculations, all the peak broadening was
14attributed to mosaicism. The contention that strain effects are quantitatively M_

subordinate to m6saicism is supported by the "reasonable" crystallite sizes ai

calculated for our samples (larger than for deformed metals, but proportionately I

so to the increased carbonate cell size).

Calculated aragonite crystallite sizes for XC-l samples are listed in

Table 1, and plotted in Fig. 4. A decrease in crystallite size with depth

(hence shock pressure) is most pronounced for the upper 15 m of XC-l core.

Below this level, there is a suggestion of continuously increasing crystallite

sizes with depth; however, the wide scatter of data and large error bars

preclude definition of such a trend. ESR results on calcite from Cactus

samples led to similar conclusions. The exponential curve fit to the line is:

°

Depth (m) = 1.16 exp [0.0004 x size (A)] [31

2
The correlation coefficient, r , is 0.76.

Data for experimentally shocked coral are listed in Table II and plotted

[ in Fig. 5. The exponential curve fit is:

Pressure (GPa) 80.71 exp [-0.0008 x size (R)1 [41

r is 0.85.

15



TABLE I

CACTUS CORE XC-l SAMPLES -

DEPTH VS. ARAGONITE CRYSTALLITE SIZE

Depth (meters) Crystallite Size (X

11.1 4750 ± 850

11.8 6218± 450

12.2 7134 ± 600

12.7-14.6 6504 300

14.6-16.2 7505 ± 450

19.2 7848 ± 500

25.4 7332 ± 300

26.5-27.7 8400 ± 300

29.7 8766 ± 300

34.1 8210± 300

35.4 8766 ± 300

37.5 9077 + 300

40.8

41.8 7969 ± 300

3
43.3 8637 ± 600

45.4 9099 ± 650

F
v-
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TABLE II

EXPERIMENTALLY SHOCKED CORAL

PRESSURE VS. ARAGONITE CRYSTALLITE SIZE

Pressure (GPa) Crystallite Size (A)

0.15 7485 t 300

1.54 6051 t 300

4.42 3376 t 300

7.14 2928 t 300

7.90 2785 _ 300

10.62 2437 ± 300

(

17



Comparing Figs. 4 and 5, a pressure of " 2 GPa would correspond to the

topmost XC-l sample. This value is of the same order of magnitude as the

4.5 ± 0.5 GPa peak pressure determined from ESR studies of XC-l calcite

(Vizgirda et al. 1979). The agreement between these two values is encouraging,

particularly considering the fact that they were obtained using two different

techniques which measured varying modes of shock deformation on two different

minerals. Note, also, that the lower size limit for the 11.1 m sample

corresponds to a shock pressure of " 3.5 GPa, which is very similar to the

ESR results.

Fig. 6 compares X-ray results from laboratory shocked single crystal

aragonite to that shocked in the Miser's Bluff TNT experiment. It appears

from the results plotted that the longer shock pulse (on the order of 100

microseconds) in the TNT blast resulted in a significantly greater amount of

damage, i.e. mosaicism than the laboratory produced shock (on the order of

1 microsecond). The exponential curve fit to the laboratory shocked aragonite

is:

Pressure (GPa) = 5.6 x 1014 exp [0.006 x size (A)] [5]

2
r = 0.99. ESR results on calcite from the Miser's Bluff experiments do not,

however, confirm these findings. The varying responses of calcite and aragonite

to short and long duration shock ?ulses require further investigation before

such comparisons can be made.

IV. ELECTRON SPIN RESONANCE INVESriGATIONS

In the past 6 months, we have completed our ESR investigation of the

Cactus crater samples and have submitted the results for publication to

Geochimica Cosmochimica Acta.

ESR investigations of experimentally shocked single and polycrystalline

calcite have also been conducted. Unlike the Cactus coral samples, the

experimentally shocked calcites do not show a measurable decrease in the
2+

amount of Mn hyperfine peak splitting. (The polycrystalline samples may

show a slight decrease; however, considering the measurement errors and the

fact that only two shocked samples are available, no definitive statements can

be made.) Qualitative spectral changes in shocked samples are, however, similar

to those observed in the Cactus coral samples. The double character of the

central spin transition peaks (see Fig. 7) is observed to become less pronounced,

18
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Figure 7: Second derivative electron spin resonance spectra, taken at X-band frequency, ofexperimentally shocked single and polycrystalline calcite samples showing Mn2+ absorption Apeak variations with shock pressure. The six prominent peaks in the center of the spectraare due to the central Mn2+ spin transitions, . = +1/2 -4- -1/2, A, = 0. Non-central spin
transitions are indicated by arrows.
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and, in tne low field peaks (i.e. in the direction of decreasing magnetic

field, H) to eventually disappear, with increasing shock pressure. Also,

absorption peaks due to non-central spin transitions (arrows in the figure)

are seen to disappear at higher shock pressures. (For a detailed discussion
2+of the Mn ESR spectrum in calcite, refer to the included manuscript.)

Note also, the differences in the spectra of single crystal calcite shocked

to 6.5 GPa and marble shocked to 6.0 GPa; from these preliminary results, it

may be concluded that polycrystalline samples show greater degrees of shock

damage than single crystal samples shocked to approximately the same levels.

It may also be speculated that porous, water-saturated, multi-phase material,

such as the Cactus coral samples, would show even greater degrees of shock

deformation.

Fig. 8 presents spectra of samples from the Haughton Astrobleme in the A

Canadian Arctic. The first spectrum is that of a dark-grey clast which, in

hand specimen, appears to be unshocked. The second spectrum is that of alight

grey, highly sheared clast. The third is that of the finely comminuted matrix

of the impact breccia. Both the second and third spectra show absorption peak !

changes characteristic of the experimentally shocked calcite (See Fig. 7)

that is, fading of the double peak character at the low field end of the

spectrum, and diminution and final disappearance of the non-central spin

transition peaks. Comparing the Haughton and experimentally shocked samples

yields preliminary shock pressure levels of 4 GPa ± 2 GPa and 6 HPa ± 2 GPa

for the sheared clast and matrix samples respectively.

V. INVESTIGATION OF SHOCK-INDUCED LATTICE PARAMETER CHANGES

An attempt was made to detect and quantify lattice parameter changes

suggested by ESR results on calcite from Cactus crater. X-ray data was

obtained on a Guinier camera using CuKa I radiation; a least squares

refinement of the data yielded cell parameters.

Due to the variability in chemistry of calcite from Cactus crater,

lattice parameter changes in the mineral could not be determined with the
G u i ' ier method. However, the aragonite in these samples showed relatively

well-defined lines, but no measurable shift was observed. Laboratory shocked

single crystal calcite (to 6.5 GPa) and aragonite (to 8.1 GPa' showed lines

that were increasingly diffuse at higher pressures, but there was no measurable

shift in position. (A slight shift, corresponding to, say, " 0.005 AX, would

20
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have been extremely difficult to detect due to extreme line broadening.)

The Miser's Bluff calcite samples provided the most accurate, and most

reproducible data. The results are plotted in Fig. 9. An increase in lattice

parameter is observed in calcite purportedly shocked to 1.0 and 0.1 GPa;
< 0 

-

note that the magnitude of the increase is , 0.01 A. The other samples remain

in the range of unshocked calcite. The discrepancies in the data may be due

to 1) inaccurate pressure gauge values, 2) local pressure variations due toA

inhomogeneities in the detonation medium (alluvium) inducing stresses in the

samples which do not correspond with gauge readings, or 3) insufficient

resolution provided by the Guinier technique. We suggest all 3 factors to

be responsible. Aragonite from the Miser's Bluff experiment did not show

any measurable increase in cell dimensions.

In general, the results from our Guinier investigations have proved

inconclusive. The fact that no definitive trends in lattice parameter shifts 4-F

in shocked calcite and aragonite were observed may be due to the large margin

for error in the method used, and not the lack of such trends. In any event,

no further Guinier investigations are planned.

VI. CONCLUSIONS

Based on the results presented in this report, the following conclusions

and recommendations for continued investigations are made:

1) The gradual transition from high to low magnesium calcite, observed

below the 11.1 m level in the Cactus XC-l core, indicates retention of pre-

impact stratigraphy and lack of a fallback breccia lens thicker than I- I m.

Comparing the level of the transition to that observed in the XRU-3 core,

it appears that rocks beneath Cactus crater have been depressed 4 to 8 m.

It would be of great interest to obtain and analyze samples from the 8 toII 12 m levels in the XRU-3 core. Results from these samples would resolve the

position and nature of the high to low Mg calcite transition outside the

crater, thereby allowing determination of the amount of downward displacement

and lending insight into the mode of in situ deformation beneath Cactus crater.

The existence of stratigraphic control on such a fine scele provides a unique

opportunity to study structural characteristics of simple craters.

2) Peak broadening in X-ray diffractometer spectra has been observed in

Iaragonite minerals shock-loaded in the laboratory and in nuclear and high-
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explosive blasts. The increase in peak width with increasing shock pressure

has proven to be a consistent and reproducible effect sensitive to shock

pressures , 1 GPa. What remains to be investigated is the cause (or causes)

of this broadening; mosaicism and plastic strain effects may both be

responsible. The degree to which these mechanisms act in carbonate mineral

deformation will require further refinement of the X-ray diffractometer

data and comparison with single crystal X-ray results. Annealing studies (to

investigate the possibility of plastic strain) are also planned.
I Peak pressures determined for Cactus core samples (". 2 GPa) with the

X-ray method are of the same order of magnitude as those obtained from ESR

investigations, although they may be lower by a factor of V 2. Several

issues need to be considered before pressures obtained from X-ray and ESR

methods can be compared. These include the varying responses of the two
different minerals tested, calcite and aragonite, to long and short duration

pulses, and to the different modes of deformation being detected by the two

methods used. In an attempt to resolve these issues we intend to analyze A

I single and polycrystalline calcite samples of constant composition,

experimentally shocked with both long (Miser's Bluff and Diablo Hawk. blasts)

and short (laboratory experiments) duration pulses, using the X-ray peak

broadening technique.

24,
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APPENDIX

E X-RAY DIFFRACTION EXPERIMENTAL PROCEDURE

X-ray powder diffractometer scans were obtained on a Norelco type

12045 B-3 unit operating at 45kv, 20 ma, and using nickel filtered copper

Ka radiation. Voltage and amperage settings, as well as the time constant,

range (500 counts per second), and slit configuration, were kept constant for

the series of experiments. A slow scan speed of 0.25' 20 per minute allowed

resolution of the high and low magnesium calcite peaks and accurate

determinations of peak widths.

Coral core and single and polycrystalline carbonate samples were ground,

in alcohol, in an agate mortar until powdered. The effect of grinding on the
! X-ray results (specifically, on the peak broadening measurements) was

investigated by comparing spectra of several aliquots of a particular coral A

sample, one of which was not ground at all, and two others requiring different

amounts cf grinding; there was no measurable difference in broadening between

the three samples. The powder was then sieved to pass through a 325, but not

a 400 mesh cloth, i.e., a standard size fraction between 38 and 43 microns was

obtained. The sieving procedure did not appear to preferentially concentrate

any phases, since spectra taken before and after show the same calcite to

aragonite ratios. Sample powders were then mixed with approximately 8 mg

of Si standard powder, wetted with methanol, and compacted into Lexan sample

holder wells with an approximate capacity of 0.07 cc.

In order to determine crystallite sizes from diffraction peak profiles,

measured line breadths were corrected for instrumental broadening. Precisely

cut single crystals of quartz (1011 face) and MgO (001 face) were used to

determine the instrumental peak rAdth of 0.120 20.

Peak heights and widths were measured using a magnifying scale. Since
the background signal proved to be reproducible, an overlay with this signal
and a drawn baseline was used to determine peak heights. With this method,

measurements of peak widths at half heights could be duplicated to within

0.004' 20, resulting in a 2% error in calculated crystallite sizes.
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